66

Advanced Automatic Control MDP 444

If you have a smart project, you can say "I'm an engineer"

Lecture 4

Staff boarder

Prof. Dr. Mostafa Zaki Zahran

Dr. Mostafa Elsayed Abdelmonem

Advanced Automatic Control MDP 444

- Lecture aims:
- Understand the Block reduction techniques
- Identify the transfer function
- Be aware by modling multiple technique

Mathematical Modeling

- Transfer Function

Component Block Diagram

Component Block Diagram

$R(s)$ Reference input
$C(s)$ Output signal (controlled variable)
$B(s) \quad$ Feedback signal $=H(s) C(s)$
$E(s) \quad$ Actuating signal (error) $=[R(s)-B(s)]$
$G(s)$ Forward path transfer function or open-loop transfer function $=C(s) / E(s)$
$M(s)$ Closed-loop transfer function $=C(s) / R(s)=G(s) /[1+G(s) H(s)]$
$H(s)$ Feedback path transfer function
$G(s) H(s) \quad$ Loop gain
$\frac{E(s)}{R(s)}=$ Error-response transfer function $\frac{1}{1+G(s) H(s)}$

TABLE 3.4.1 Some of the Block Diagram Reduction Manipulations

Original Block Diagram	Manipulation	Modified Block Diagram
$\xrightarrow{R} G_{1} \xrightarrow{C}$	Cascaded elements	$\xrightarrow{R} G_{1} G_{2} \xrightarrow{C}$
	Addition or subtraction (eliminating auxiliary forward path)	$\xrightarrow{R} G_{1} \pm G_{2} \xrightarrow{C}$
$\xrightarrow[\longleftrightarrow]{R} \quad G \quad \xrightarrow{C}$	Shifting of pickoff point ahead of block	
	Shifting of pickoff point behind block	
	Shifting summing point ahead of block	
	Shifting summing point behind block	
	Removing H from feedback path	
	Eliminating feedback path	$\xrightarrow{R} \xrightarrow{\frac{G}{1+G H} \xrightarrow{C}}$

Signal Flow

A signal-flow graph is a diagram consisting of nodes that are connected by several directed branches and is a graphical representation of a set of linear relations.
The basic element of a signal-flow graph is a unidirectional path segment called a branch
A loop is a closed path that originates and terminates on the same node. Two loops are said to be nontouching if they do not have a common node

$$
T_{i j}=\frac{\sum_{k} P_{i j k} \Delta_{i j k}}{\Delta}
$$

$$
P_{i j k}=\text { gain of } k \text { th path from variable } x_{i} \text { to variable } x_{j},
$$

$$
\Delta=\text { determinant of the graph, }
$$

$$
\Delta_{i j k}=\text { cofactor of the path } P_{i j k},
$$

$\begin{aligned} \Delta=1-\sum_{n=1}^{N} L_{n}+\sum_{\substack{n, m}} L_{n} L_{m}-\sum_{\substack{n, m, p, p \\ \text { nontouching }}} L_{n} L_{m} L_{p}+\cdots \Delta=1 & - \text { (sum of all different loop gains) } \\ & + \text { (sum of the gain products of all combinations of two nontouching loops) } \\ & - \text { (sum of the gain products of all combinations of three nontouching loops) } \\ & +\cdots .\end{aligned}$
The cofactor $\Delta_{i j k}$ is the determinant with the loops touching the k th path removed.

Signal Flow

The paths connecting the input $R(s)$ and output $Y(s)$ are

$$
P_{1}=G_{1} G_{2} G_{3} G_{4}(\text { path } 1) \text { and } P_{2}=G_{5} G_{6} G_{7} G_{8}(\text { path } 2)
$$

There are four self-loops:

$$
L_{1}=G_{2} H_{2}, \quad L_{2}=H_{3} G_{3}, \quad L_{3}=G_{6} H_{6}, \quad \text { and } \quad L_{4}=G_{7} H_{7}
$$

Loops L1 and L2 do not touch L3 and L4. Therefore, the determinant is

$$
\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)
$$

The cofactor of the determinant along path 1 is evaluated by removing the loops that touch path 1 from $\Delta . \Delta_{1}=1-\left(L_{3}+L_{4}\right)$
Similarly, the cofactor for path 2 is $\Delta_{2}=1-\left(L_{1}+L_{2}\right)$

Therefore, the transfer function of the system is

$$
\frac{Y(s)}{R(s)}=T(s)=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{G_{1} G_{2} G_{3} G_{4}\left(1-L_{3}-L_{4}\right)+G_{5} G_{6} G_{7} G_{8}\left(1-L_{1}-L_{2}\right)}{1-L_{1}-L_{2}-L_{3}-L_{4}+L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4} .}
$$

Signal Flow

The armature-controlled DC motor

Signal Flow

The armature-controlled DC motor

Using Mason's signal-flow gain formula, transfer function for $\theta(s) / V a(s)$ with $T d(s)=\rho_{m}(s)$
The forward path is P1(s), which touches the one loop, $L 1(s)$, where

$$
G_{2}(s)=\frac{1}{J s+b}
$$

$P_{1}(s)=\frac{1}{s} G_{1}(s) G_{2}(s) \quad$ and $\quad L_{1}(s)=-K_{b} G_{1}(s) G_{2}(s)$.
$\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)$
$T(s)=\frac{P_{1}(s)}{1-L_{1}(s)}=\frac{(1 / s) G_{1}(s) G_{2}(s)}{1+K_{b} G_{1}(s) G_{2}(s)}=\frac{K_{m}}{s\left[\left(R_{a}+L_{a} s\right)(J s+b)+K_{b} K_{m}\right]}$,

State Space Equations

- State equations is a description which relates the following $\dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t)$ four elements: input, system, state variables, and output

$$
\mathbf{y}(t)=C \mathbf{x}(t)+D \mathbf{D}(t)
$$

Matrix A has dimensions $n \times n$ and it is called the system matrix, having the general form

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

Matrix B has dimensions $n x m$ and it is called the input matrix, having the general form
Matrix C has dimensions pxn and it is called the output matrix, having the general form

$$
\mathbf{C}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & & \vdots \\
c_{p 1} & c_{p 2} & \cdots & c_{p n}
\end{array}\right]
$$

Matrix D has dimensions pxm and it is called the feedforward matrix, having the general form

$$
\mathbf{B}=\left[\begin{array}{cccc}
b_{11} & b_{1} & \cdots & b_{m 1} \\
b_{21} & b_{21} & \cdots & b_{m 2} \\
\vdots & \vdots & & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{m n}
\end{array}\right]
$$

$$
\mathbf{D}=\left[\begin{array}{cccc}
d_{11} & d_{12} & \cdots & d_{1 m} \\
d_{21} & d_{22} & \cdots & d_{2 m} \\
\vdots & \vdots & & \vdots \\
d_{p 1} & d_{p 2} & \cdots & d_{p m}
\end{array}\right]
$$

State Space

- The general form of a dynamic system

The concept of a set of state variables that represent a dynamic system can be illustrated in terms of the spring-mass-damper system. A set of state variables sufficient to describe this system includes the position and the velocity of the mass.

- We will define a set of state variables as ($x 1, x 2$), where

$$
x_{1}(t)=y(t) \quad \text { and } \quad x_{2}(t)=\frac{d y(t)}{d t} . \quad \frac{d x_{1}}{d t}=x_{2}
$$

To write Equation of motion in terms of the state variables, we substitute the state variables as already defined and obtain

$$
M \frac{d x_{2}}{d t}+b x_{2}+k x_{1}=u(t)
$$

$$
M \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+k y=u(t)
$$

Therefore, we can write the equations that describe the behavior of the spring-mass damper system as the set of two first-order differential equations

$$
\frac{d x_{2}}{d t}=\frac{-b}{M} x_{2}-\frac{k}{M} x_{1}+\frac{1}{M} u
$$

State Space

- State space matrix

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{2} \\
& {\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-k & \frac{-b}{m}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right]\left[u_{(t)}\right]}
\end{aligned}
$$

Signal Flow

A signal-flow graph is a diagram consisting of nodes that are connected by several directed branches and is a graphical representation of a set of linear relations.
The basic element of a signal-flow graph is a unidirectional path segment called a branch
A loop is a closed path that originates and terminates on the same node. Two loops are said to be nontouching if they do not have a common node

$$
T_{i j}=\frac{\sum_{k} P_{i j k} \Delta_{i j k}}{\Delta}
$$

$$
P_{i j k}=\text { gain of } k \text { th path from variable } x_{i} \text { to variable } x_{j},
$$

$$
\Delta=\text { determinant of the graph, }
$$

$$
\Delta_{i j k}=\text { cofactor of the path } P_{i j k},
$$

$\begin{aligned} \Delta=1-\sum_{n=1}^{N} L_{n}+\sum_{\substack{n, m}} L_{n} L_{m}-\sum_{\substack{n, m, p, p \\ \text { nontouching }}} L_{n} L_{m} L_{p}+\cdots \Delta=1 & - \text { (sum of all different loop gains) } \\ & + \text { (sum of the gain products of all combinations of two nontouching loops) } \\ & - \text { (sum of the gain products of all combinations of three nontouching loops) } \\ & +\cdots .\end{aligned}$
The cofactor $\Delta_{i j k}$ is the determinant with the loops touching the k th path removed.

Signal Flow

The paths connecting the input $R(s)$ and output $Y(s)$ are

$$
P_{1}=G_{1} G_{2} G_{3} G_{4}(\text { path } 1) \text { and } P_{2}=G_{5} G_{6} G_{7} G_{8}(\text { path } 2)
$$

There are four self-loops:

$$
L_{1}=G_{2} H_{2}, \quad L_{2}=H_{3} G_{3}, \quad L_{3}=G_{6} H_{6}, \quad \text { and } \quad L_{4}=G_{7} H_{7}
$$

Loops L1 and L2 do not touch L3 and L4. Therefore, the determinant is

$$
\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)
$$

The cofactor of the determinant along path 1 is evaluated by removing the loops that touch path 1 from $\Delta . \Delta_{1}=1-\left(L_{3}+L_{4}\right)$
Similarly, the cofactor for path 2 is $\Delta_{2}=1-\left(L_{1}+L_{2}\right)$

Therefore, the transfer function of the system is

$$
\frac{Y(s)}{R(s)}=T(s)=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{G_{1} G_{2} G_{3} G_{4}\left(1-L_{3}-L_{4}\right)+G_{5} G_{6} G_{7} G_{8}\left(1-L_{1}-L_{2}\right)}{1-L_{1}-L_{2}-L_{3}-L_{4}+L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4} .}
$$

Signal Flow

The armature-controlled DC motor

Signal Flow

The armature-controlled DC motor

Using Mason's signal-flow gain formula, transfer function for $\theta(s) / V a(s)$ with $T d(s)=\rho_{m}(s)$
The forward path is P1(s), which touches the one loop, $L 1(s)$, where

$$
G_{2}(s)=\frac{1}{J s+b}
$$

$P_{1}(s)=\frac{1}{s} G_{1}(s) G_{2}(s) \quad$ and $\quad L_{1}(s)=-K_{b} G_{1}(s) G_{2}(s)$.
$\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)$
$T(s)=\frac{P_{1}(s)}{1-L_{1}(s)}=\frac{(1 / s) G_{1}(s) G_{2}(s)}{1+K_{b} G_{1}(s) G_{2}(s)}=\frac{K_{m}}{s\left[\left(R_{a}+L_{a} s\right)(J s+b)+K_{b} K_{m}\right]}$,

State Space Equations

- State equations is a description which relates the following $\dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t)$ four elements: input, system, state variables, and output

$$
\mathbf{y}(t)=C \mathbf{x}(t)+D \mathbf{D}(t)
$$

Matrix A has dimensions $n \times n$ and it is called the system matrix, having the general form

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

Matrix B has dimensions $n x m$ and it is called the input matrix, having the general form
Matrix C has dimensions pxn and it is called the output matrix, having the general form

$$
\mathbf{C}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & & \vdots \\
c_{p 1} & c_{p 2} & \cdots & c_{p n}
\end{array}\right]
$$

Matrix D has dimensions pxm and it is called the feedforward matrix, having the general form

$$
\mathbf{B}=\left[\begin{array}{cccc}
b_{11} & b_{1} & \cdots & b_{m 1} \\
b_{21} & b_{21} & \cdots & b_{m 2} \\
\vdots & \vdots & & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{m n}
\end{array}\right]
$$

$$
\mathbf{D}=\left[\begin{array}{cccc}
d_{11} & d_{12} & \cdots & d_{1 m} \\
d_{21} & d_{22} & \cdots & d_{2 m} \\
\vdots & \vdots & & \vdots \\
d_{p 1} & d_{p 2} & \cdots & d_{p m}
\end{array}\right]
$$

The general form of a dynamic system

State Space Equations

State Space Representation

- The general form of a dynamic system

The concept of a set of state variables that represent a dynamic system can be illustrated in terms of the spring-mass-damper system. A set of state variables sufficient to describe this system includes the position and the velocity of the mass.

- We will define a set of state variables as ($x 1, x 2$), where

$$
x_{1}(t)=y(t) \quad \text { and } \quad x_{2}(t)=\frac{d y(t)}{d t} . \quad \frac{d x_{1}}{d t}=x_{2}
$$

To write Equation of motion in terms of the state variables, we substitute the state variables as already defined and obtain

$$
M \frac{d x_{2}}{d t}+b x_{2}+k x_{1}=u(t)
$$

$$
M \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+k y=u(t)
$$

Therefore, we can write the equations that describe the behavior of the spring-mass damper system as the set of two first-order differential equations

$$
\frac{d x_{2}}{d t}=\frac{-b}{M} x_{2}-\frac{k}{M} x_{1}+\frac{1}{M} u
$$

State Space Representation

- State space matrix

$$
\begin{gathered}
\frac{d x_{2}}{d t}=\frac{-b}{M} x_{2}-\frac{k}{M} x_{1}+\frac{1}{M} u \\
{\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
\frac{-k}{m} & \frac{-b}{m}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right]\left[u_{(t)}\right]}
\end{gathered}
$$

State Space Representation

- RLC circuit example

- The state of this system can be described by a set of state variables $(x 1, x 2)$, where $x 1$ is the capacitor voltage $v o(t)$ and $x 2$ is the inductor current $i_{L}\{t)$.
- Utilizing Kirchhoff's current law at the junction

OR

$$
i_{c}=C \frac{d v_{c}}{d t}=+u(t)-i_{L}
$$

Kirchhoff's voltage law for the right-hand loop provides the equation describing the rate of change of inductor current as

$$
L \frac{d i_{L}}{d t}=-R i_{L}+v_{c}
$$

The output of this system is represented

$$
v_{0}=R i_{L}(t)
$$

State Space Representation

RLC circuit example

- rewrite Equations as a set of two first-order differential equations in terms of the state variables $x 1$ and $x 2$ as follows:

$$
\frac{d x_{1}}{d t}=-\frac{1}{C} x_{2}+\frac{1}{C} u(t) \quad \frac{d x_{2}}{d t}=+\frac{1}{L} x_{1}-\frac{R}{L} x_{2}
$$

$$
y_{1}(t)=v_{0}(t)=R x_{2}
$$

- obtain the state variable differential equation for the RLC

- The output signal is then

$$
\begin{gathered}
L \frac{d i_{L}}{d t}=-R i_{L}+v_{c} \\
v_{0}=R i_{L}(t)
\end{gathered}
$$

- and the output as

$$
y=\left[\begin{array}{ll}
0 & R
\end{array}\right] \mathbf{x}
$$

$$
\dot{\mathbf{x}}=\left[\begin{array}{cc}
0 & \frac{-1}{C} \\
\frac{1}{L} & \frac{-R}{L}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
\frac{1}{C} \\
0
\end{array}\right] u(t)
$$

TRANSFER FUNCTION FROM THE STATE EQUATION

- Obtain a transfer function $G(s)$, Given the state variable equations. Recalling Equations :where v is the single output and u is the single input. $\quad \begin{aligned} & \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B} u \\ & y=\mathbf{C x}+\mathbf{D} u\end{aligned}$

$$
y=\mathbf{C x}+\mathbf{D} u
$$

The Laplace transforms of Equations

$$
\begin{aligned}
& s \mathbf{X}(s)=\mathbf{A X}(s)+\mathbf{B} U(s) \\
& Y(s)=\mathbf{C X}(s)+\mathbf{D} U(s)
\end{aligned}
$$

where B is an $n \times 1$ matrix, since u is a single input, we obtain

$$
\begin{gathered}
(s \mathbf{I}-\mathbf{A}) \mathbf{X}(s)=\mathbf{B} U(s) \\
\mathbf{X}(s)=\Phi(s) \mathbf{B} U(s)
\end{gathered}
$$

- we obtain state transition Matrix

$$
[s \mathbf{I}-\mathbf{A}]^{-1}=\boldsymbol{\Phi}(s)
$$

TRANSFER FUNCTION FROM THE STATE EQUATION

- Transfer function $G(s): G(s)=Y(s) / U(s)$ is

$$
G(s)=\mathbf{C} \boldsymbol{\Phi}(s) \mathbf{B}+\mathbf{D}
$$

- Let us determine the transfer function $G(s)=Y(s) / U(s)$ for the RLC circuit, described by the differential equations

$$
\begin{aligned}
& y=\left[\begin{array}{ll}
0 & R
\end{array}\right] \mathbf{x} \text {. }
\end{aligned}
$$

TRANSFER FUNCTION FROM THE STATE EQUATION

- Then we have
- Therefore, we obtain

$$
[s \mathbf{I}-\mathbf{A}]=\left[\begin{array}{cc}
s & \frac{1}{C} \\
\frac{-1}{L} & s+\frac{R}{L}
\end{array}\right]
$$

$$
\Phi(s)=[s \mathbf{I}-\mathbf{A}]^{-1}=\frac{1}{\Delta(s)}\left[\begin{array}{cc}
\left(s+\frac{R}{L}\right) & \frac{-1}{C} \\
\frac{1}{L} & s
\end{array}\right] \Delta(s)=s^{2}+\frac{R}{L} s+\frac{1}{L C}
$$

- Then the transfer function is

$$
G(s)=\left[\begin{array}{ll}
0 & R
\end{array}\right]\left[\begin{array}{cc}
\frac{s+\frac{R}{L}}{\Delta(s)} & \frac{-1}{C \Delta(s)} \\
\frac{1}{L \Delta(s)} & \frac{s}{\Delta(s)}
\end{array}\right]\left[\begin{array}{l}
\frac{1}{C} \\
0
\end{array}\right]=\frac{R /(L C)}{\Delta(s)}=\frac{R /(L C)}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
$$

State Space representation

- Transfer from time domain to frequency domain:

$$
\begin{aligned}
& R_{1} i_{1}(t)+\frac{1}{C} \int_{0}^{t} i_{1}(t) \mathrm{d} t-\frac{1}{C} \int_{0}^{t} i_{2}(t) \mathrm{d} t=v(t) \\
& {\left[R_{1}+\frac{1}{C s}\right] I_{1}(s)-\frac{1}{C s} I_{2}(s)=V(s)} \\
& -\frac{1}{C} \int_{0}^{i} i_{1}(t) \mathrm{d} t+R_{2} i_{2}(t)+L \frac{\mathrm{~d} i_{2}}{\mathrm{~d} t}+\frac{1}{C} \int_{0}^{t} i_{2}(t) \mathrm{d} t=0 \\
& -\frac{1}{C s} I_{1}(s)+\left[R_{2}+L s+\frac{1}{C s}\right] \mathrm{I}_{2}(s)=0
\end{aligned}
$$

- Transfer function

$$
\frac{I_{2}(s)}{V(s)}=\frac{C s}{\left(R_{1} C s+1\right)\left(L C s^{2}+R_{2} C s+1\right)-1}=\frac{1}{R_{1} L C s^{2}+\left(R_{1} R_{2} C+L\right) s+R_{1}+R_{2}}
$$

State Space representation

$$
\left\{\begin{array}{l}
e(t)-R_{1} i_{1}(t)-L_{1} \frac{d i_{1}}{d t}-V_{C}(t)=\phi \\
V_{C}(t)-L_{2} \frac{d i_{2}}{d t}-R_{2} i_{2}=\phi \\
i_{c}=i_{1}-i_{2}=C \frac{d v_{c}}{d t}
\end{array}\right.
$$

$$
x=\left(\begin{array}{lll}
i_{1} & i_{2} & v_{c}
\end{array}\right)^{T}
$$

$$
X^{\bullet}=\left(\begin{array}{ccc}
\frac{-R_{1}}{L_{1}} & 0 & \frac{-1}{L_{1}} \\
0 & \frac{-R_{2}}{L_{2}} & \frac{1}{L_{2}} \\
\frac{1}{C} & \frac{-1}{C} & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{c}
\frac{1}{L_{1}} \\
0 \\
0
\end{array}\right) e(t)
$$

$$
y(t)=\left(\begin{array}{lll}
0 & R_{2} & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

State Space representation

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned} \quad \sum \text { Laplace } \quad\left\{\begin{array}{l}
\left\{\begin{array}{l}
S x(s)-x(0)=A x(s)+B u(s) \\
Y(s)=C x(s)+D u(s)
\end{array}\right. \\
\hline
\end{array}\right.
$$

$$
G(S)=\frac{Q(S)}{|S I-A|}
$$

State Space representation

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-5 x_{1}-x_{2}+2 u \\
\dot{x}_{2}=3 x_{1}-x_{2}+5 u
\end{array} \Rightarrow \dot{x}=\left(\begin{array}{rr}
-5 & -1 \\
3 & -1
\end{array}\right) x+\binom{2}{5}^{u}\right.
$$

$$
y=x_{1}+2 x_{2} \quad y=\left(\begin{array}{ll}
1 & 2
\end{array}\right) x
$$

$$
\begin{gathered}
G(S)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
S+1 & -1 \\
3 & S+5
\end{array}\right]\left[\begin{array}{l}
2 \\
5
\end{array}\right] \\
G(s)=\frac{12 S+59}{(S+2)(S+4)}
\end{gathered}
$$

Model Examples

- Pulse Width Modulation (PWM)

