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* Lecture aims:
* Understand the Block reduction techniques
* Identify the transfer function

* Be aware by modling multiple technique
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Component Block Diagram

Controlled

Reference Actuating Feedforward variable i :
input signal elements (output signal) C(s) Output signal (controlled variable)

. B(s) Feedback signal = H(s)C(s)

RG) E(s) > G(s) P C(s) > E(s) Actuating siinal (error) = [R(s) — B(s)]

e(?) c(?) G(s) Forward path transfer function or

open-loop transfer function = C(s)/E(s)

M(s) Closed-loop transfer function = C(s)/R(s) = G(s)/[1 + G(s)H(s)]
H(s) Feedback path transfer function

Feedback H(s) G(s)H(s) Loop gain

E(s) 1

Feedback elements — = . ion —~+
RG) Error-response transfer function T+ GOH®)

R(s) Reference input

signal




TABLE 3.4.1 Some of the Block Diagram Reduction Manipulations

Original Block Diagram

Manipulation

Modified Block Diagram

Gy

G,

C

3

Cascaded elements

R

—_—

Addition or subtraction
(eliminating auxiliary
forward path)

Shifting of pickoff
point ahead of block

Shifting of pickoff
point behind block

Shifting summing
point ahead of block

Shifting summing
point behind block

Removing H from
feedback path

Eliminating
feedback path




Signal Flow

A signal-flow graph is a diagram consisting of nodes that are connected

by several directed branches and is a graphical representation of a set of

linear relations.

The basic element of a signal-flow graph is a unidirectional path Kk
segment called a branch 4 A

A loop is a closed path that originates and terminates on Fiji = gain of kth path from variable x; to variable x;,
A = determinant of the graph,

A;jx = cofactor of the path Py,

the same node. Two loops are said to be nontouching if they do
not have a common node

N
A=1-SL,+ > LuLy- E L,LnL, + «..A =1~ (sum of all different loop gains)
n=1 A, m

_ 1 b + (sum of the gain products of all combinations of two nontouching loops)
nontouching nontouching . . . .
— (sum of the gain products of all combinations of three nontouching loops)

+ ..o,
The cofactor A;; is the determinant with the loops touching the kth path removed.




Signal Flow

The paths connecting the input R(s) and output Y'(s) are
P, = G\G,G3G, (path 1) and P, = GsG¢G;Gy (path 2)
There are four self-loops:
L, = G,H,, L, = HyG,, Ly = GgHg, and L4 = G;H;
Loops L7 and L2 do not touch L3 and 4. Therefore, the determinantis g (3
A=1-(Ly+Ly+ Ly+ Lg) + (L1L; + L{Ly + L,Ly + L,L,)

The cofactor of the determinant along path 1 is evaluated by removing
the loops that touch path 1 from A. Ay =1 = (L3 + L)
Similatly, the cofactor for path 2is A =1 = (L; + L;)
Therefore, the transfer function of the system is
PAL + PA, _  GiGGG(1 — Ly — L) + GsGeGiGe(1 — Ly — Ly)
A 1—-L;—L,—L3—Ly+ LiLs+ LiLy+ LyLs+ LyLy

=T(s) =




Signal Flow
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Signal Flow

The armature-controlled DC motor 1

K, _
Gy(s) = G = 55

. . . Rﬂ + Lﬂs
Using Mason's signal-flow gain formula,

transfer function for 0(5)/ 1a(s) with Td(s) = le O G T;'ff] T,";(f) Gy(s)

v oy
The forward path is P7(s), which touches
the one loop, L.7(s), where

1
¥
A=1- (Ll -+ LE + Lg + L4) + (L*[Lg + L1L4 + LgL:; + L2L4)

PI(S) — (I/S)GI(S)GE(S) — Km
L= Ly(s) 1+ KGi(s)Gals)  s[(Rq + Las)(Us + b) + KKy

Pi(s) = =Gi(s)Gy(s) and Ly(s) = —KpGi(s)Gy(s).

I(s) =




State Space Equations

* State equations is a description which relates the following (1) = Ax(r) + Bu(z)

four elements: input, system, state variables, and output ¥(6) = Cx(t) + Du1)

& g br NN dayy dyr =+ Ay
Matrix A has dimensions nxn and it is called the @y @y e day
system matrix, having the general form I :

fg) dyy s gy

Matrix B has dimensions nxm and it is called the input matrix, having the general
form [ﬁ'll €12 =t Clp
€21 €2 -+ Oy

Matrix C has dimensions pxn and it is called the
output matrix, having the general form

Cpl ‘:';ﬂ “or Cpp

Matrix D has dimensions pxm and it is called the feedforward matrix, having the
general form




State Space

* The general form of a dynamic system

The concept of a set of state variables that represent a dynamic system can be illustrated in terms of
the spring-mass-damper system. A set of state variables sufficient to desctibe this system includes the
position and the velocity of the mass.

* We will define a set of state variables as (x7, x2), where

d &
x,(1) = y(r) and x,(t) = ﬁ%ﬁﬂ f = X2

To write Equation of motion in terms of the state variables, we substitute the state variables as

already defined and obtain dx, d?y dy
M— + bx; + kx; = u(t) M—‘f'b‘—'f'ky—ﬂ(f)

dt
Therefore, we can write the equations that describe the behavior of the spring-mass damper system as
the set of two first-order differential equations d b k |

HI; = Exl + Eu

dt?

e
- |friction <

' b
B <

M

l_\‘(l) u({)l

dt




State Space

* State space matrix

»

S —\/\/\/\7/_\/\/\/‘— | '

b Wall
|friction

b

1

|
i
d?

]
l_\‘(l) u({)l g

dy
M—+b——+ky—u(r)

dt?

dt
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State Space Equations
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The general form of a dynamic system

Initial
conditions

> Dynamic system
state x(r)




State Space Equations




State Space Representation

|

* The general form of a dynamic system

The concept of a set of state variables that represent a dynamic system can be illustrated in terms of
the spring-mass-damper system. A set of state variables sufficient to desctibe this system includes the
position and the velocity of the mass.

* We will define a set of state variables as (x7, x2), where

d &
x,(1) = y(r) and x,(t) = ﬁ%ﬁﬂ f = X2

To write Equation of motion in terms of the state variables, we substitute the state variables as
already defined and obtain dx d?y

| Wall
|friction

b

= —\/\/\/\7/_\/\/\/‘—

l_\‘(l) u({)l

dy
M— + bx, + kxi = u(t) M—‘f'b‘—'f'ky—ﬂ(f)

dt dt?
Therefore, we can write the equations that describe the behavior of the spring-mass damper system as
the set of two first-order differential equations d b k |

HI; = Exl + Eu

dt




State Space Representation

* State space matrix

i i
|
| -.

'

o v wow |

dy
M—+b——-+k = u(t
gz T by TRy =u)

d?




State Space Representation

RLC circuit example

The state of this system can be described by a set of state
variables (x7, x2), where x7 is the capacitor voltage vo(?) and x2

is the inductor current 7 {7).

Utilizing Kirchhoft’s current law at the junction "
i

duv. Current ( 4

i, = C“{EL = +u(t) — iy source

OR

Kirchhoff’s voltage law for the right-hand loop provides the equation

describing the rate of change of inductor currentas  g4;,
L-&“ = —Ri; + v,

The output of this system is represented
v, = Riy(2)




RLC circuit example

State Space Representation

i,

S : : : u(r)
rewrite Equations as a set of two first-order differential cunen ®

: 5 ; u, =l c
equations in terms of the state variables x7 and x2 as source —’F

follows: dy _ 1.1 dx, 1 R dv,

di
%) = v(t) = R, L—f=Ri, + v,

obtain the state variable differential equation for the RI.C Vo = Rig(r)

The output signal 1s then

and the output as
y=[0 Rlx




TRANSFER FUNCTION FROM THE
STATE EQUATION

* Obtain a transfer function G(s), Given the state variable
equations. Recalling Equations :where v is the single output

and # is the single input. X = Ax + Bu
y=0Cx + Du

The Laplace transtorms of Equations  sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)

where B 1s an 7 x 1 matrix, since # 1s a single input, we obtain
(sT — A)X(s) = BU(s)
X(s) = ®(s)BU(s)
® we obtain state transition Matrix
[sI — A]™! = ®(s)




TRANSFER FUNCTION FROM THE
STATE EQUATION

* Transfer function G(5): G(s) = Y(5)/ U(s) is
G(s) = C®(s)B + D

* Let us determine the transfer function G(5) = Y(5)/ U(s) for the
RI.C circuit, described by the differential equations




TRANSFER FUNCTION FROM THE
STATE EQUATION

* Then we have

[sT — A] =

* Therefote we obtain

®(s) =[sT — A]! =

As)

.|_
1
L

®* Then the transfer function is

G(s) = [0 R]

1(%)

1]
C
+

R
L
?

5

e

s+
L

u(r)

Current (})

source

R

1

As) = 82+ —s + ——

—

—1

A(s)
1

CA(s)

5

| LA(s)

A(s)

L

H)

LC

R/(LC) _

R/(LC)

A(s)




State Space representation

Transfer from time domain to frequency domain:

[ 1[I
Ryiy(r) + EL i(r)yde = EL (N dr = (1)

1 1
[R] + a} f] {5‘} - E.’g{ﬂ = F{‘i]

L[, di. 1] .

| 1
— af] (5) + [Rz 4+ L'?+F]]1|[-ﬂ =0

5

* Transfer function
L(s) Cs

) ot

V(s)  (RiCs+ ILCS + RyCs+ 1) =1 ~ RLCS + (R, RC + L)s+ R, + R,




State Space representation

e(t) Ry b () -

di, _
Ve () - L, T Ryl, =¢

.
dt




State Space representation

= Ax+Bu —X(0)=Ax(s)+Bu(s
y =CX + Y (s)=C x(s)+Du(s)

GE)=C(s1-» "B - e




State Space representation

X, =— 9%, — X, +2U . -
u I S - 1
—A)= (S+5)(S+1)+3
-3 S+1 T acocal

|

S+1 -1
3




Model Examples

* Pulse Width Modulation (PWM)




